aboutsummaryrefslogtreecommitdiff
path: root/research/sample-data/streaming/audio_analyzer.py
blob: e8beab0e5787776c282e5fa9d76f49ec91c32a63 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
import sys
import re
import binascii
from collections import Counter, defaultdict
import struct
import os.path

def parse_hex_stream(file_path):
    """Parse hexadecimal stream from a text file."""
    try:
        with open(file_path, 'r') as f:
            content = f.read()
        
        # Remove any whitespace and line breaks
        content = re.sub(r'\s+', '', content)
        return content
    except Exception as e:
        print(f"Error reading file: {e}")
        return None

def identify_packets(hex_stream):
    """Split the hex stream into individual packets based on MEL header pattern."""
    # Pattern is 4d454c04 which is "MEL\x04" in ASCII
    packet_pattern = r'4d454c04'
    
    # Find all positions of the pattern
    positions = [match.start() for match in re.finditer(packet_pattern, hex_stream)]
    
    packets = []
    for i in range(len(positions)):
        start = positions[i]
        # If this is the last pattern occurrence, go to end of stream
        end = positions[i+1] if i < len(positions) - 1 else len(hex_stream)
        packet = hex_stream[start:end]
        packets.append(packet)
    
    return packets

def analyze_packet_structure(packet):
    """Analyze the structure of a single packet."""
    if len(packet) < 20:  # Ensure packet has enough bytes for header
        return {"error": "Packet too short"}
    
    # Extract header components
    header = packet[:8]  # MEL\x04
    version = packet[8:12]  # Version or type
    sequence = packet[12:16]  # Possibly sequence number
    flags = packet[16:20]  # Possibly flags
    
    # Extract length fields (if they exist)
    length_field = packet[20:28]
    
    # Extract the data portion (minus the checksum)
    data = packet[28:-4]
    
    # Extract the checksum (last 2 bytes / 4 hex chars)
    checksum = packet[-4:]
    
    # Calculate expected checksum (simple CRC)
    # This is just a placeholder; actual checksum algorithm would need to be determined
    calculated_checksum = binascii.crc32(bytes.fromhex(packet[:-4])) & 0xFFFF
    checksum_match = hex(calculated_checksum)[2:].zfill(4) == checksum.lower()
    
    return {
        "header": header,
        "version": version,
        "sequence": sequence,
        "flags": flags,
        "length_field": length_field,
        "data_length": len(data) // 2,  # Byte count
        "checksum": checksum,
        "checksum_match": checksum_match,
        "total_bytes": len(packet) // 2
    }

def detect_duplicates(packets):
    """Detect duplicate packets in the stream."""
    duplicates = []
    for i in range(len(packets) - 1):
        if packets[i] == packets[i + 1]:
            duplicates.append(i)
    
    duplicate_percentage = (len(duplicates) / len(packets)) * 100 if packets else 0
    return {
        "duplicate_count": len(duplicates),
        "duplicate_indices": duplicates,
        "duplicate_percentage": duplicate_percentage
    }

def guess_codec(packets, file_path):
    """Attempt to identify the audio codec based on packet patterns."""
    # Extract common headers or patterns
    headers = Counter([packet[:24] for packet in packets])
    most_common_header = headers.most_common(1)[0][0] if headers else "Unknown"
    
    # Check for known codec signatures
    codec = "Unknown"
    quality = "Unknown"
    
    if "400hz-sine-wave" in file_path:
        quality = "High Quality"
    elif "400hz-square-wave" in file_path:
        quality = "High Quality"
    elif "audio-stream" in file_path:
        quality = "Normal Quality"
    
    # Since we know the system uses the LAME encoder (binary shipped with software)
    if most_common_header.startswith("4d454c0409010"):
        codec = "LAME MP3 (packaged in MEL Audio Format)"
    
    # MP3 frame analysis
    mp3_frame_sync_count = 0
    potential_bitrate = None
    potential_sample_rate = None
    
    # Check each packet for MP3 headers (starting with 0xFF 0xFB for MPEG-1 Layer 3)
    for packet in packets[:min(10, len(packets))]:  # Check first 10 packets
        data_portion = packet[28:-4]  # Skip header and checksum
        
        # Look for MP3 frame sync patterns
        sync_positions = [m.start() for m in re.finditer(r'fffb', data_portion)]
        if sync_positions:
            mp3_frame_sync_count += len(sync_positions)
            
            # Try to extract bitrate and sample rate from first valid header
            for pos in sync_positions:
                if pos + 4 <= len(data_portion):
                    try:
                        header_bytes = bytes.fromhex(data_portion[pos:pos+8])
                        # Extract bits 16-19 for bitrate index (0-based)
                        bitrate_index = (header_bytes[2] >> 4) & 0x0F
                        # Extract bits 20-21 for sample rate index
                        sample_rate_index = (header_bytes[2] >> 2) & 0x03
                        
                        # MPEG-1 Layer 3 bitrate table (kbps): 0 is free format
                        bitrates = [0, 32, 40, 48, 56, 64, 80, 96, 112, 128, 144, 160, 192, 224, 256, 320]
                        # MPEG-1 sample rates: 44100, 48000, 32000 Hz
                        sample_rates = [44100, 48000, 32000, 0]  # 0 is reserved
                        
                        if bitrate_index > 0 and sample_rate_index < 3:  # Valid indices
                            potential_bitrate = bitrates[bitrate_index]
                            potential_sample_rate = sample_rates[sample_rate_index]
                            break
                    except:
                        pass  # Skip if unable to parse header
    
    # Evaluate if this is likely MP3 based on frame sync patterns
    mp3_likelihood = "High" if mp3_frame_sync_count > 5 else "Medium" if mp3_frame_sync_count > 0 else "Low"
    
    # Check for stream characteristics that might indicate codec/bitrate
    avg_packet_size = sum(len(p) for p in packets) / (2 * len(packets)) if packets else 0
    
    if potential_bitrate:
        codec_guess = f"LAME MP3 ({potential_bitrate}kbps)"
    elif 1000 <= avg_packet_size <= 1500:
        codec_guess = "LAME MP3 (48-64kbps)"
    elif avg_packet_size > 1500:
        codec_guess = "LAME MP3 (96-128kbps or higher)"
    else:
        codec_guess = "LAME MP3 (low bitrate)"
    
    return {
        "likely_codec": codec,
        "quality_setting": quality,
        "most_common_header": most_common_header,
        "codec_guess_from_size": codec_guess,
        "average_packet_size_bytes": avg_packet_size,
        "mp3_frame_sync_found": mp3_frame_sync_count > 0,
        "mp3_likelihood": mp3_likelihood,
        "detected_bitrate_kbps": potential_bitrate,
        "detected_sample_rate_hz": potential_sample_rate
    }

def detect_repetition_pattern(packets):
    """Analyze if packets are sent in repeating patterns (beyond simple duplication)."""
    if len(packets) < 4:
        return {"pattern": "Not enough packets to detect pattern"}
    
    # Check if every second packet is a repeat
    alternate_duplicates = all(packets[i] == packets[i+2] for i in range(0, len(packets)-2, 2))
    
    # Check for more complex patterns
    repeats_every_n = None
    for n in range(2, min(10, len(packets) // 2)):
        if all(packets[i] == packets[i+n] for i in range(len(packets)-n)):
            repeats_every_n = n
            break
    
    return {
        "alternating_duplicates": alternate_duplicates,
        "repeats_every_n": repeats_every_n
    }

def extract_timestamps(packets):
    """Try to extract timestamp information from packets."""
    timestamps = []
    for i, packet in enumerate(packets):
        # This would need to be adjusted based on actual packet structure
        # Assuming timestamp might be in a specific position
        potential_timestamp = packet[24:32]
        try:
            # Try to interpret as a 32-bit timestamp
            ts_value = int(potential_timestamp, 16)
            timestamps.append(ts_value)
        except:
            timestamps.append(None)
    
    return timestamps

def calculate_total_duration(packets, sample_rate=44100):
    """Estimate total audio duration based on packet analysis."""
    # This is a rough estimation and would need adjustment based on the actual codec
    if not packets:
        return 0
    
    # For MP3, we'll use a different approach since we now know it's LAME MP3
    # Assuming each packet contains a fixed number of samples
    samples_per_frame = 1152  # Standard for MP3
    
    # Count potential MP3 frames in the data
    frame_count = 0
    for packet in packets:
        data_portion = packet[28:-4]  # Skip header and checksum
        # Look for MP3 frame sync patterns (0xFF 0xFB for MPEG-1 Layer 3)
        sync_positions = [m.start() for m in re.finditer(r'fffb', data_portion)]
        frame_count += len(sync_positions)
    
    # If we can't detect frames, fallback to packet-based estimation
    if frame_count == 0:
        # Total unique packets as a conservative estimate
        unique_packets = len(set(packets))
        # Estimate one frame per packet (conservative)
        frame_count = unique_packets
    
    # Estimate duration
    total_samples = frame_count * samples_per_frame
    duration_seconds = total_samples / sample_rate
    
    return duration_seconds

def analyze_audio_stream(file_path):
    """Complete analysis of an audio stream file."""
    hex_stream = parse_hex_stream(file_path)
    if not hex_stream:
        return {"error": "Failed to parse hex stream"}
    
    packets = identify_packets(hex_stream)
    if not packets:
        return {"error": "No valid packets identified"}
    
    packet_analyses = [analyze_packet_structure(p) for p in packets]
    packet_lengths = [p["total_bytes"] for p in packet_analyses]
    
    # Group by packet lengths to detect patterns
    length_count = Counter(packet_lengths)
    most_common_lengths = length_count.most_common(3)
    
    duplicates = detect_duplicates(packets)
    codec_info = guess_codec(packets, file_path)
    repetition = detect_repetition_pattern(packets)
    timestamps = extract_timestamps(packets)
    
    # Use detected sample rate if available, otherwise default to 44100
    sample_rate = codec_info.get("detected_sample_rate_hz", 44100)
    duration = calculate_total_duration(packets, sample_rate)
    
    # Analyze duplicated packets pattern
    pairs = []
    for i in range(0, len(packets)-1, 2):
        if i+1 < len(packets):
            are_identical = packets[i] == packets[i+1]
            pairs.append(are_identical)
    
    pairs_percentage = sum(pairs)/len(pairs)*100 if pairs else 0
    
    # Extract LAME tag info if present for VBR and encoding quality
    lame_version = None
    lame_tag_found = False
    vbr_method = None
    
    # Look for LAME tag in first few packets
    for packet in packets[:min(5, len(packets))]:
        data_portion = packet[28:-4]  # Skip header and checksum
        # Look for "LAME" or "Lavf" strings in hex
        if "4c414d45" in data_portion.lower():  # "LAME" in hex
            lame_tag_found = True
            # Additional LAME tag parsing could be added here
        elif "4c617666" in data_portion.lower():  # "Lavf" in hex (LAVF container format)
            lame_tag_found = True
    
    return {
        "file_name": os.path.basename(file_path),
        "total_packets": len(packets),
        "unique_packets": len(set(packets)),
        "packet_lengths": most_common_lengths,
        "average_packet_length": sum(packet_lengths) / len(packet_lengths) if packet_lengths else 0,
        "duplicates": duplicates,
        "codec_info": codec_info,
        "repetition_pattern": repetition,
        "timestamp_pattern": "Available" if any(timestamps) else "Not found",
        "estimated_duration_seconds": duration,
        "paired_packet_pattern": f"{pairs_percentage:.1f}% of packets appear in identical pairs",
        "lame_tag_found": lame_tag_found
    }

def main():
    if len(sys.argv) < 2:
        print("Usage: python audio_analyzer.py <audio_file.txt> [audio_file2.txt] ...")
        return
    
    for file_path in sys.argv[1:]:
        print(f"\nAnalyzing: {file_path}")
        print("-" * 50)
        
        analysis = analyze_audio_stream(file_path)
        
        if "error" in analysis:
            print(f"Error: {analysis['error']}")
            continue
        
        print(f"File: {analysis['file_name']}")
        print(f"Total packets: {analysis['total_packets']}")
        print(f"Unique packets: {analysis['unique_packets']}")
        print(f"Most common packet lengths (bytes): {analysis['packet_lengths']}")
        print(f"Average packet length: {analysis['average_packet_length']:.2f} bytes")
        print(f"Duplicates: {analysis['duplicates']['duplicate_count']} ({analysis['duplicates']['duplicate_percentage']:.1f}%)")
        print(f"Likely codec: {analysis['codec_info']['likely_codec']}")
        print(f"Quality setting: {analysis['codec_info']['quality_setting']}")
        print(f"Codec estimate: {analysis['codec_info']['codec_guess_from_size']}")
        print(f"MP3 likelihood: {analysis['codec_info'].get('mp3_likelihood', 'Unknown')}")
        
        if analysis['codec_info'].get('detected_bitrate_kbps'):
            print(f"Detected bitrate: {analysis['codec_info']['detected_bitrate_kbps']} kbps")
        if analysis['codec_info'].get('detected_sample_rate_hz'):
            print(f"Detected sample rate: {analysis['codec_info']['detected_sample_rate_hz']} Hz")
            
        print(f"LAME tag found: {'Yes' if analysis.get('lame_tag_found', False) else 'No'}")
        print(f"Repetition pattern: {analysis['repetition_pattern']}")
        print(f"Estimated duration: {analysis['estimated_duration_seconds']:.2f} seconds")
        print(f"Packet pairing: {analysis['paired_packet_pattern']}")

if __name__ == "__main__":
    main()