aboutsummaryrefslogtreecommitdiff
path: root/research/executables/claude-ai-slop/checksum_bruteforce.py
blob: 3cfa7cf43f829a7187f23fdc802447dfde2eed1a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
#!/usr/bin/env python3
"""
Comprehensive checksum bruteforce tool for the MEL protocol
Usage: python checksum_bruteforce.py <hex_file>
"""

import sys
import struct
from typing import List, Tuple, Dict

def parse_hex_line(hex_string: str) -> List[int]:
    """Parse a hex string into list of bytes"""
    hex_clean = hex_string.strip().replace(' ', '')
    return [int(hex_clean[i:i+2], 16) for i in range(0, len(hex_clean), 2)]

def bytes_to_hex(bytes_list: List[int]) -> str:
    """Convert bytes to hex string"""
    return ''.join(f'{b:02x}' for b in bytes_list)

class ChecksumTester:
    def __init__(self):
        self.algorithms = [
            self.simple_sum,
            self.sum_with_carry,
            self.twos_complement,
            self.ones_complement,
            self.xor_checksum,
            self.crc16_ccitt,
            self.crc16_ibm,
            self.fletcher16,
            self.modsum_256,
            self.internet_checksum,
        ]
        
    def simple_sum(self, data: List[int]) -> int:
        """Simple sum of all bytes"""
        return sum(data) & 0xFFFF
    
    def sum_with_carry(self, data: List[int]) -> int:
        """Sum with end-around carry"""
        s = sum(data)
        while s > 0xFFFF:
            s = (s & 0xFFFF) + (s >> 16)
        return s
    
    def twos_complement(self, data: List[int]) -> int:
        """Two's complement of sum"""
        s = sum(data)
        return (~s + 1) & 0xFFFF
    
    def ones_complement(self, data: List[int]) -> int:
        """One's complement of sum"""
        s = sum(data)
        return (~s) & 0xFFFF
    
    def xor_checksum(self, data: List[int]) -> int:
        """XOR of all bytes, extended to 16-bit"""
        result = 0
        for b in data:
            result ^= b
        return result
    
    def crc16_ccitt(self, data: List[int], poly: int = 0x1021) -> int:
        """CRC-16 CCITT"""
        crc = 0xFFFF
        for byte in data:
            crc ^= (byte << 8)
            for _ in range(8):
                if crc & 0x8000:
                    crc = (crc << 1) ^ poly
                else:
                    crc <<= 1
                crc &= 0xFFFF
        return crc
    
    def crc16_ibm(self, data: List[int]) -> int:
        """CRC-16 IBM/ANSI"""
        return self.crc16_ccitt(data, 0x8005)
    
    def fletcher16(self, data: List[int]) -> int:
        """Fletcher-16 checksum"""
        sum1 = sum2 = 0
        for byte in data:
            sum1 = (sum1 + byte) % 255
            sum2 = (sum2 + sum1) % 255
        return (sum2 << 8) | sum1
    
    def modsum_256(self, data: List[int]) -> int:
        """Sum modulo 256, extended to 16-bit"""
        return sum(data) % 256
    
    def internet_checksum(self, data: List[int]) -> int:
        """Internet/TCP checksum"""
        # Pad to even length
        if len(data) % 2:
            data = data + [0]
        
        s = 0
        for i in range(0, len(data), 2):
            s += (data[i] << 8) + data[i+1]
        
        while s >> 16:
            s = (s & 0xFFFF) + (s >> 16)
        
        return (~s) & 0xFFFF

def test_parametric_algorithms(data: List[int], expected: int) -> List[str]:
    """Test algorithms with various parameters"""
    matches = []
    
    # Test sum with different initial values
    for init_val in range(0, 0x10000, 0x1000):
        result = (init_val + sum(data)) & 0xFFFF
        if result == expected:
            matches.append(f"Sum + 0x{init_val:04x}")
    
    # Test sum with different modulo values
    for mod_val in [0xFF, 0x100, 0x101, 0x1FF, 0x200, 0xFFFF, 0x10000]:
        if mod_val > 0:
            result = sum(data) % mod_val
            if result == expected:
                matches.append(f"Sum mod 0x{mod_val:x}")
    
    # Test XOR with different patterns
    for pattern in [0x00, 0xFF, 0xAA, 0x55, 0x5A, 0xA5]:
        result = 0
        for byte in data:
            result ^= (byte ^ pattern)
        if (result & 0xFFFF) == expected:
            matches.append(f"XOR with pattern 0x{pattern:02x}")
    
    # Test rotation-based checksums
    for shift in range(1, 16):
        result = 0
        for byte in data:
            result = ((result << shift) | (result >> (16 - shift))) & 0xFFFF
            result ^= byte
        if result == expected:
            matches.append(f"Rotate-XOR shift {shift}")
    
    return matches

def analyze_file(filename: str):
    """Analyze a file of hex data to find checksum patterns"""
    with open(filename, 'r') as f:
        lines = [line.strip() for line in f if line.strip()]
    
    print(f"Analyzing {filename} with {len(lines)} entries")
    
    tester = ChecksumTester()
    algorithm_matches = {}
    
    # Test first 10 entries to find patterns
    for i, line in enumerate(lines[:10]):
        bytes_data = parse_hex_line(line)
        if len(bytes_data) < 3:
            continue
            
        # Assume last 2 bytes are checksum
        payload = bytes_data[:-2]
        checksum_be = (bytes_data[-2] << 8) | bytes_data[-1]
        checksum_le = bytes_data[-2] | (bytes_data[-1] << 8)
        
        print(f"\nEntry {i}:")
        print(f"  Payload: {bytes_to_hex(payload)}")
        print(f"  Checksum BE: 0x{checksum_be:04x}")
        print(f"  Checksum LE: 0x{checksum_le:04x}")
        
        # Test standard algorithms for both byte orders
        for checksum, order in [(checksum_be, "BE"), (checksum_le, "LE")]:
            print(f"  Testing {order} interpretation:")
            for algo in tester.algorithms:
                result = algo(payload)
                if result == checksum:
                    algo_name = f"{algo.__name__}_{order}"
                    algorithm_matches[algo_name] = algorithm_matches.get(algo_name, 0) + 1
                    print(f"    ✓ {algo.__name__}: 0x{result:04x}")
                else:
                    print(f"    ✗ {algo.__name__}: 0x{result:04x}")
            
            # Test parametric algorithms
            param_matches = test_parametric_algorithms(payload, checksum)
            for match in param_matches:
                print(f"    ✓ {match}")
                key = f"{match}_{order}"
                algorithm_matches[key] = algorithm_matches.get(key, 0) + 1
    
    # Summary of algorithms that work consistently
    print(f"\n{'='*50}")
    print("SUMMARY - Algorithms with multiple matches:")
    for algo, count in sorted(algorithm_matches.items(), key=lambda x: x[1], reverse=True):
        if count > 1:
            print(f"  {algo}: {count} matches")
    
    return algorithm_matches

def brute_force_unknown_algorithm(filename: str, max_entries: int = 5):
    """Brute force approach for completely unknown algorithms"""
    with open(filename, 'r') as f:
        lines = [line.strip() for line in f if line.strip()][:max_entries]
    
    print(f"Brute forcing {len(lines)} entries...")
    
    # Collect all data points
    data_points = []
    for line in lines:
        bytes_data = parse_hex_line(line)
        payload = bytes_data[:-2]
        checksum_le = bytes_data[-2] | (bytes_data[-1] << 8)
        data_points.append((payload, checksum_le))
    
    # Try to find a mathematical relationship
    # This is a simplified approach - in practice you'd want more sophisticated analysis
    
    # Check if it's a linear relationship: checksum = a * sum(payload) + b
    if len(data_points) >= 2:
        payload_sums = [sum(payload) for payload, _ in data_points]
        checksums = [checksum for _, checksum in data_points]
        
        print(f"Payload sums: {[f'0x{s:x}' for s in payload_sums[:5]]}")
        print(f"Checksums:    {[f'0x{c:04x}' for c in checksums[:5]]}")
        
        # Try to solve for linear relationship
        if len(set(payload_sums)) > 1:  # Need different sums to solve
            sum1, sum2 = payload_sums[0], payload_sums[1]
            check1, check2 = checksums[0], checksums[1]
            
            if sum1 != sum2:
                # Solve: check1 = a * sum1 + b, check2 = a * sum2 + b
                a = (check2 - check1) / (sum2 - sum1)
                b = check1 - a * sum1
                
                print(f"Testing linear relationship: checksum = {a:.3f} * sum + {b:.3f}")
                
                # Verify with all data points
                matches = 0
                for payload, expected in data_points:
                    predicted = int(a * sum(payload) + b) & 0xFFFF
                    if predicted == expected:
                        matches += 1
                        print(f"  ✓ Linear match: sum={sum(payload)}, expected=0x{expected:04x}, predicted=0x{predicted:04x}")
                    else:
                        print(f"  ✗ Linear miss: sum={sum(payload)}, expected=0x{expected:04x}, predicted=0x{predicted:04x}")
                
                if matches == len(data_points):
                    print(f"🎉 FOUND LINEAR RELATIONSHIP! checksum = {a:.3f} * sum(payload) + {b:.3f}")

def generate_test_vectors(base_hex: str, variations: int = 10):
    """Generate test vectors by modifying a base message"""
    base_bytes = parse_hex_line(base_hex)
    payload = base_bytes[:-2]
    
    print(f"Generating {variations} test vectors from base:")
    print(f"Base: {base_hex}")
    
    # Generate variations by changing single bytes
    for i in range(min(variations, len(payload))):
        modified = payload.copy()
        modified[i] = (modified[i] + 1) % 256  # Increment one byte
        
        # You would calculate the correct checksum here and append it
        # For now, we'll just show the modified payload
        print(f"Variation {i}: {bytes_to_hex(modified)} + [CHECKSUM_TO_CALCULATE]")

def test_specific_algorithms(data: List[int], expected: int) -> Dict[str, int]:
    """Test specific algorithms that might be used in embedded systems"""
    results = {}
    
    # Test sum with various bit operations
    s = sum(data)
    
    # Basic variations
    results["sum_low16"] = s & 0xFFFF
    results["sum_high16"] = (s >> 16) & 0xFFFF
    results["sum_rotated"] = ((s << 8) | (s >> 8)) & 0xFFFF
    results["sum_inverted"] = (~s) & 0xFFFF
    results["sum_twos_comp"] = (-s) & 0xFFFF
    
    # With different initial values (common in embedded systems)
    for init in [0x0000, 0x5555, 0xAAAA, 0xFFFF, 0x1234, 0x4321]:
        results[f"sum_init_{init:04x}"] = (s + init) & 0xFFFF
        results[f"xor_init_{init:04x}"] = (s ^ init) & 0xFFFF
    
    # Byte-wise operations
    byte_xor = 0
    byte_sum = 0
    for b in data:
        byte_xor ^= b
        byte_sum += b
    
    results["byte_xor"] = byte_xor
    results["byte_xor_16bit"] = (byte_xor << 8) | byte_xor
    results["byte_sum_mod256"] = byte_sum % 256
    results["byte_sum_mod255"] = byte_sum % 255
    
    # Position-weighted sums
    pos_sum = sum(i * b for i, b in enumerate(data))
    results["position_weighted"] = pos_sum & 0xFFFF
    
    # Polynomial checksums (simplified)
    poly_result = 0
    for b in data:
        poly_result = ((poly_result << 1) ^ b) & 0xFFFF
    results["poly_shift_xor"] = poly_result
    
    # Return only matches
    return {name: value for name, value in results.items() if value == expected}

def main():
    if len(sys.argv) != 2:
        print("Usage: python checksum_bruteforce.py <hex_file>")
        print("\nThis tool will:")
        print("1. Test standard checksum algorithms")
        print("2. Try parametric variations")
        print("3. Attempt to find mathematical relationships")
        print("4. Generate test vectors for validation")
        sys.exit(1)
    
    filename = sys.argv[1]
    
    try:
        # Main analysis
        print("=" * 60)
        print("COMPREHENSIVE CHECKSUM ANALYSIS")
        print("=" * 60)
        
        matches = analyze_file(filename)
        
        print("\n" + "=" * 60)
        print("BRUTE FORCE UNKNOWN ALGORITHMS")
        print("=" * 60)
        
        brute_force_unknown_algorithm(filename, max_entries=10)
        
        print("\n" + "=" * 60)
        print("SPECIFIC EMBEDDED ALGORITHMS")
        print("=" * 60)
        
        # Test first entry with specific algorithms
        with open(filename, 'r') as f:
            first_line = f.readline().strip()
            
        bytes_data = parse_hex_line(first_line)
        payload = bytes_data[:-2]
        checksum_le = bytes_data[-2] | (bytes_data[-1] << 8)
        
        specific_matches = test_specific_algorithms(payload, checksum_le)
        if specific_matches:
            print("Specific algorithm matches found:")
            for name, value in specific_matches.items():
                print(f"  ✓ {name}: 0x{value:04x}")
        else:
            print("No specific algorithm matches found")
        
        print("\n" + "=" * 60)
        print("TEST VECTOR GENERATION")
        print("=" * 60)
        
        generate_test_vectors(first_line, 5)
        
    except FileNotFoundError:
        print(f"Error: File '{filename}' not found")
    except Exception as e:
        print(f"Error: {e}")

if __name__ == "__main__":
    main()