import sys import pandas as pd import re # Ensure its easier to use for normies if len(sys.argv) < 2: print("Usage: python rdb-to-sheets.py [output_file]") print("Example: python rdb-to-sheets.py RDBv2.txt RDB.xlsx") print("If no output file is defined RDB.xlsx will be used per default make sure such doesn't exist already") sys.exit(1) # Committ da sus side for script! # Set input and output file input_file = sys.argv[1] output_path = sys.argv[2] if len(sys.argv) > 2 else "RDB.xlsx" # Default to RDB.xlsx if user of script doesnt define it lmao with open(input_file, "r") as file: lines = file.readlines() # Look at the data def parse_rdb_data(lines): entries = [] current_entry = {} current_tns = [] for line in lines: line = line.strip() if not line: continue # New DN entry starts if line.startswith("DN"): if current_entry: # How about we save the previous entry before we look at a new one omg if current_tns: current_entry["TNs"] = current_tns entries.append(current_entry) current_tns = [] current_entry = {"DN": line.split()[1]} elif "CPND" in line: current_entry["NAME"] = None elif "NAME" in line and current_entry.get("NAME") is None: current_entry["NAME"] = line.replace("NAME", "").strip() elif line.startswith("TYPE"): current_entry["TYPE"] = line.split()[1] elif line.startswith("ROUT"): current_entry["ROUT"] = line.split()[1] elif line.startswith("STCD"): current_entry["STCD"] = line.split()[1] elif line.startswith("FEAT"): current_entry["FEAT"] = " ".join(line.split()[1:]) elif line.startswith("TN"): tn_match = re.search(r"(\d{3} \d \d{2} \d{2})", line) if tn_match: tn_value = tn_match.group(1) tn_entry = {"TN_1_TN": tn_value} key_match = re.search(r"KEY (\d{2})", line) if key_match: tn_entry["KEY"] = key_match.group(1) des_match = re.search(r"DES\s+(\S+)", line) if des_match: tn_entry["DES"] = des_match.group(1) date_match = re.search(r"(\d{1,2} \w{3} \d{4})", line) if date_match: tn_entry["DATE"] = date_match.group(0) tn_entry["MARP"] = "YES" if "MARP" in line else "NO" current_tns.append(tn_entry) if current_entry: if current_tns: current_entry["TNs"] = current_tns entries.append(current_entry) return entries parsed_entries = parse_rdb_data(lines) # Categorize them and shit def categorize_entries(entries): main_entries = [] multiple_tns_entries = [] route_entries = [] cdp_entries = [] feature_code_entries = [] att_ldn_entries = [] other_entries = [] unexpected_data = [] for entry in entries: entry_type = entry.get("TYPE") if entry_type in ["SL1", "500"]: if "TNs" in entry and len(entry["TNs"]) > 1: for tn in entry["TNs"]: multi_entry = entry.copy() multi_entry.update(tn) multiple_tns_entries.append(multi_entry) elif "TNs" in entry: for tn in entry["TNs"]: main_entry = entry.copy() main_entry.update(tn) main_entries.append(main_entry) else: main_entries.append(entry) elif entry_type in ["ATT", "LDN"]: if "TNs" in entry: for tn in entry["TNs"]: att_ldn_entry = entry.copy() att_ldn_entry.update(tn) att_ldn_entries.append(att_ldn_entry) else: att_ldn_entries.append(entry) elif entry_type == "RDB": route_entries.append(entry) elif entry_type == "CDP": cdp_entries.append({"DN": entry.get("DN", ""), "TYPE": entry.get("TYPE", ""), "STCD": entry.get("STCD", "DSC")}) elif entry_type == "FFC": feature_code_entries.append(entry) elif entry_type is None: unexpected_data.append(entry) else: other_entries.append(entry) unexpected_sheet_name = "No Unexpected Data" if not unexpected_data else "Unexpected Data" return main_entries, multiple_tns_entries, route_entries, cdp_entries, feature_code_entries, att_ldn_entries, other_entries, unexpected_data, unexpected_sheet_name # Categorize entries further main_entries, multiple_tns_entries, route_entries, cdp_entries, feature_code_entries, att_ldn_entries, other_entries, unexpected_data, unexpected_sheet_name = categorize_entries(parsed_entries) # Save all the data to excel but dropping the raw unprocessed TNs tab that gets made for some reason I dont know why I hate coding and python with pd.ExcelWriter(output_path) as writer: for sheet_name, data in { "Main": main_entries, "Multiple TNs": multiple_tns_entries, "Routes": route_entries, "CDP": cdp_entries, "Feature Codes": feature_code_entries, "ATT_LDN": att_ldn_entries, "Other": other_entries, unexpected_sheet_name: unexpected_data }.items(): df = pd.DataFrame(data) if "TNs" in df.columns: df = df.drop(columns=["TNs"]) # Remove TNs column if present df.to_excel(writer, sheet_name=sheet_name, index=False) print("Processing complete. Output saved to", output_path)