#!/usr/bin/env python3 """ MEL Protocol Checksum Analyzer Specifically designed for the MEL protocol hex data Based on analysis of the provided data patterns. """ import sys from typing import List, Tuple def parse_hex(hex_str: str) -> List[int]: """Parse hex string to bytes""" return [int(hex_str[i:i+2], 16) for i in range(0, len(hex_str), 2)] def analyze_mel_structure(hex_line: str) -> dict: """Analyze MEL protocol structure""" bytes_data = parse_hex(hex_line.strip()) return { 'header': bytes_data[0:4], # 4D454C00 'length': bytes_data[4], # Packet length 'flags': bytes_data[5:8], # Type/flags 'sequence': bytes_data[6], # Sequence number (based on your data) 'command': bytes_data[8:12], # Command and zone info 'zone_mask': bytes_data[12:16], # Zone targeting 'reserved': bytes_data[16:28], # Reserved/padding 'payload': bytes_data[28:-2], # Actual payload 'checksum_bytes': bytes_data[-2:], # Last 2 bytes 'checksum_le': bytes_data[-2] | (bytes_data[-1] << 8), # Little endian 'checksum_be': (bytes_data[-2] << 8) | bytes_data[-1], # Big endian 'full_payload': bytes_data[:-2], # Everything except checksum } def test_mel_checksums(data: List[int], expected: int) -> List[Tuple[str, int, bool]]: """Test checksum algorithms specific to MEL protocol""" results = [] # Test 1: Simple sum of all payload bytes simple_sum = sum(data) & 0xFFFF results.append(("Simple Sum", simple_sum, simple_sum == expected)) # Test 2: Sum with initial value (common in embedded protocols) for init_val in [0x0000, 0x5555, 0xAAAA, 0xFFFF, 0x1234, 0x4321, 0x0001]: checksum = (sum(data) + init_val) & 0xFFFF results.append((f"Sum + 0x{init_val:04x}", checksum, checksum == expected)) # Test 3: Two's complement variations sum_val = sum(data) twos_comp = (~sum_val + 1) & 0xFFFF results.append(("Two's Complement", twos_comp, twos_comp == expected)) # Test 4: One's complement ones_comp = (~sum_val) & 0xFFFF results.append(("One's Complement", ones_comp, ones_comp == expected)) # Test 5: Subtract from constant for const in [0xFFFF, 0x10000, 0x8000, 0x7FFF]: checksum = (const - sum_val) & 0xFFFF results.append((f"0x{const:04x} - Sum", checksum, checksum == expected)) # Test 6: XOR-based checksums xor_result = 0 for byte in data: xor_result ^= byte results.append(("XOR all bytes", xor_result, xor_result == expected)) # Test 7: Position-weighted sum pos_sum = sum(i * byte for i, byte in enumerate(data)) & 0xFFFF results.append(("Position-weighted sum", pos_sum, pos_sum == expected)) # Test 8: Rolling checksum rolling = 0 for byte in data: rolling = ((rolling << 1) | (rolling >> 15)) & 0xFFFF rolling ^= byte results.append(("Rolling XOR", rolling, rolling == expected)) # Test 9: Modular arithmetic variations for mod_val in [0x100, 0x101, 0x1FF, 0x200, 0x255, 0x256]: if mod_val > 0: checksum = sum(data) % mod_val results.append((f"Sum mod 0x{mod_val:x}", checksum, checksum == expected)) return results def analyze_sequence_relationship(filename: str): """Analyze relationship between sequence numbers and checksums""" with open(filename, 'r') as f: lines = [line.strip() for line in f if line.strip()] print(f"Analyzing sequence-checksum relationship in {filename}") print("=" * 60) sequence_data = [] for i, line in enumerate(lines[:20]): # First 20 entries mel_data = analyze_mel_structure(line) # Look for the actual sequence field # Based on your data, it seems to increment in byte 6 actual_sequence = mel_data['sequence'] checksum = mel_data['checksum_le'] sequence_data.append((i, actual_sequence, checksum)) print(f"Entry {i:2d}: seq=0x{actual_sequence:02x} ({actual_sequence:3d}), " f"checksum=0x{checksum:04x} ({checksum:5d})") # Look for patterns print("\nSequence vs Checksum Analysis:") print("=" * 40) # Check if checksum changes predictably with sequence if len(sequence_data) > 1: for i in range(1, min(10, len(sequence_data))): seq_diff = sequence_data[i][1] - sequence_data[i-1][1] check_diff = sequence_data[i][2] - sequence_data[i-1][2] print(f"Entry {i-1}→{i}: seq_diff={seq_diff:2d}, check_diff={check_diff:4d} (0x{check_diff & 0xFFFF:04x})") def find_checksum_algorithm(filename: str): """Main function to find the checksum algorithm""" with open(filename, 'r') as f: lines = [line.strip() for line in f if line.strip()] print(f"MEL Protocol Checksum Analysis") print(f"File: {filename}") print(f"Entries: {len(lines)}") print("=" * 60) # Analyze first few entries algorithm_scores = {} for i, line in enumerate(lines[:10]): mel_data = analyze_mel_structure(line) print(f"\nEntry {i}:") print(f" Hex: {line}") print(f" Sequence: 0x{mel_data['sequence']:02x}") print(f" Expected checksum: 0x{mel_data['checksum_le']:04x} (LE)") print(f" Payload length: {len(mel_data['full_payload'])} bytes") # Test algorithms results = test_mel_checksums(mel_data['full_payload'], mel_data['checksum_le']) for algo_name, result, is_match in results: if is_match: print(f" āœ“ {algo_name}: 0x{result:04x}") algorithm_scores[algo_name] = algorithm_scores.get(algo_name, 0) + 1 # Uncomment below to see all results # else: # print(f" āœ— {algo_name}: 0x{result:04x}") # Summary print(f"\n{'='*60}") print("ALGORITHM MATCH SUMMARY") print(f"{'='*60}") if algorithm_scores: for algo, score in sorted(algorithm_scores.items(), key=lambda x: x[1], reverse=True): print(f"{algo}: {score}/10 matches") best_algo = max(algorithm_scores.items(), key=lambda x: x[1]) if best_algo[1] >= 8: # At least 8/10 matches print(f"\nšŸŽ‰ LIKELY ALGORITHM FOUND: {best_algo[0]}") print(f" Confidence: {best_algo[1]}/10 matches") else: print("No consistent algorithm found with standard methods.") print("This may require custom algorithm development.") # Analyze sequence relationship print(f"\n{'='*60}") analyze_sequence_relationship(filename) def verify_algorithm(filename: str, algorithm_name: str): """Verify a specific algorithm against all entries""" with open(filename, 'r') as f: lines = [line.strip() for line in f if line.strip()] print(f"Verifying algorithm '{algorithm_name}' against {len(lines)} entries...") matches = 0 mismatches = [] for i, line in enumerate(lines): mel_data = analyze_mel_structure(line) expected = mel_data['checksum_le'] # Apply the algorithm (you'd implement the specific one here) if algorithm_name == "Simple Sum": calculated = sum(mel_data['full_payload']) & 0xFFFF elif algorithm_name.startswith("Sum + "): init_val = int(algorithm_name.split("0x")[1], 16) calculated = (sum(mel_data['full_payload']) + init_val) & 0xFFFF else: print(f"Algorithm '{algorithm_name}' not implemented in verify function") return if calculated == expected: matches += 1 else: mismatches.append((i, expected, calculated)) if len(mismatches) <= 5: # Show first 5 mismatches print(f" Mismatch at entry {i}: expected 0x{expected:04x}, got 0x{calculated:04x}") print(f"Results: {matches}/{len(lines)} matches ({100*matches/len(lines):.1f}%)") if matches == len(lines): print("šŸŽ‰ PERFECT MATCH! Algorithm verified.") elif matches > len(lines) * 0.9: print("āš ļø Very close match. May need minor adjustment.") else: print("āŒ Algorithm doesn't work consistently.") def main(): if len(sys.argv) < 2: print("Usage:") print(" python mel_checksum_analyzer.py # Find algorithm") print(" python mel_checksum_analyzer.py verify # Verify algorithm") sys.exit(1) filename = sys.argv[1] if len(sys.argv) >= 4 and sys.argv[2] == "verify": algorithm = sys.argv[3] verify_algorithm(filename, algorithm) else: find_checksum_algorithm(filename) if __name__ == "__main__": main()